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1 Express
1

r�r + 1��r − 1� in partial fractions. [1]

Find
nÐ

r=2

1
r�r + 1��r − 1� . �4�

State the value of
∞Ð

r=2

1
r�r + 1��r − 1� . �1�

2 Show that the matrix

`1 4 2
3 0 −2
3 −3 −4

a
has no inverse. [2]

Solve the system of equations

x + 4y + 2Ï = 0,

3x − 2Ï = 4,

3x − 3y − 4Ï = 5. [4]

3 Find the general solution of the differential equation

d2y

dx2 + 2
dy
dx

+ 4y = 4x2 + 8. �7�

4 A curve has parametric equations

x = 21 − sin 21, y = 1− cos 21, for −30 ≤ 1 ≤ 30.

Show that
dy
dx

= cot1,

except for certain values of1, which should be stated. [4]

Find the value of
d2y

dx2 when1 = 1
40. [3]

5 The equation

8x3 + 36x2 + kx − 21= 0,

wherek is a constant, has rootsa − d, a, a + d. Find the numerical values of the roots and determine
the value ofk. [8]
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6 [In this question you may use, without proof, the formulaÓ secx dx = ln�secx + tanx� + const.]

(a) Let y = secx. Find the mean value ofy with respect tox over the interval160 ≤ x ≤ 1
30. [4]

(b) The curveC has equationy = − ln�cosx�, for 0≤ x ≤ 1
30. Find the arc length ofC. [4]

7 The curveC has equation

y = 2x2 + 5x − 1
x + 2

.

Find the equations of the asymptotes ofC. [3]

Show that
dy
dx

> 2 at all points onC. [3]

SketchC. [3]

8 The pointsA, B, C have position vectors

4i + 5j + 6k, 5i + 7j + 8k, 2i + 6j + 4k,

respectively, relative to the originO. Find a cartesian equation of the planeABC. [4]

The pointD has position vector 6i + 3j + 6k. Find the coordinates ofE, the point of intersection of
the lineOD with the planeABC. [4]

Find the acute angle between the lineED and the planeABC. [3]

9 Prove by mathematical induction that, for every positive integern,

�cos1 + i sin1�n = cosn1 + i sinn1. �5�

Express sin51 in the formp sin 51 + q sin 31 + r sin1, wherep, q andr are rational numbers to be
determined. [6]

10 The curveC has polar equationr = 2 sin1�1− cos1�, for 0≤ 1 ≤ 0. Find
dr
d1 and hence find the polar

coordinates of the point ofC that is furthest from the pole. [5]

SketchC. [2]

Find the exact area of the sector from1 = 0 to1 = 1
40. [6]

[Question 11 is printed on the next page.]
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11 Answer onlyone of the following two alternatives.

EITHER

Let In = Ó 1

0
�1+ x2�n

dx. Show that, for all integersn,

�2n + 1�In = 2nIn−1 + 2n. �5�

EvaluateI0 and hence findI3. [4]

Given thatI−1 = 1
40, find I−3. [5]

OR

The vectore is an eigenvector of each of the 3× 3 matricesA andB, with corresponding eigenvalues
, and- respectively. Justifying your answer, state an eigenvalueof A + B. [3]

The matrixA, where

A =
`6 −1 −6

1 0 −2
3 −1 −3

a
,

has eigenvectors

`
1
1
1

a
,

`
1

−1
1

a
,

`
2
0
1

a
. Find the corresponding eigenvalues. [4]

The matrixB, where

B =
`8 −2 −8

2 0 −4
4 −2 −4

a
,

also has eigenvectors

`
1
1
1

a
,

`
1

−1
1

a
,

`
2
0
1

a
, for which −2, 2, 4, respectively, are corresponding

eigenvalues. The matrixM is given by M = A + B − 5I, whereI is the 3× 3 identity matrix.
State the eigenvalues ofM. [1]

Find matricesR andS and a diagonal matrixD such thatM5 = RDS. [6]

[You should show clearly all the elements of the matricesR, S andD.]
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